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In this section, we consider several variants of the TF model and the L model and evaluate their
results. We describe a total of 36 variants marked with different colors in the tables in Figures S9
and S10. For each variant we explore the space of the parameters pv and pc. We run the mod-
els for pv from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} and pc from {0, 0.0003, 0.001, 0.003, 0.01, 0.03},
yielding in total 48 parameter combinations. For each of the model variants, we find the param-
eters that minimize the fitting error E. We plot its value in Figures S9 and S10. In the following
paragraphs, we describe in detail each of the variants and its results.
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Figure S9: The model variants. Values of the fitting error E for the UK for the variants of the
following models: the TF model, the TF model with pv = 0, the TF model with pc = 0, the L model
and the TF model with uniformly or normally distributed jumps. The default variant described in
the manuscript is marked with the the red rectangle.

First, we modify the jump size distribution to understand its impact on the geo-social proper-
ties. We consider the following cases: the default power-law jumps with exponent 1.55, a minimal
jump length of 1km and a cutoff at 100km, as in [1] (the TF model), uniformly distributed random
jumps up to 100km (TF-uniform), normally distributed jumps with standard deviation of 1km
(TF-normal), and no jumps to new locations at all (the L model). We plot the minimal fitting error
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Figure S10: The model variants. Values of the fitting error E for Germany for the variants of the
models as in Figure S9.

of these cases in Figures S9 and S10 using different colors of the curves. The default power-law
jumps show the best results with the lowest error for most of the variants. The normal distribu-
tion and the L model tend to perform considerably worse. The highly unrealistic uniform jumps
understandingly provide the worst results and the highest error values for almost all variants.

To assess the role of friend visits and random connections we turn on and off these two compo-
nents by setting to zero the corresponding parameters pv and pc. We plot the results in Figures S9
and S10 with dashed and dotted lines. We observe significantly higher error values whenever one
of these two components is turned off, for most of the model’s variants, what demonstrates their
importance for the TF model.

To prevent users from spreading into inhabited regions, we include in the TF model an angular
preference for the jumps. Namely, the direction of each jump is chosen randomly with a probabil-
ity proportional to the number of inhabitants present at the destination. Note that this does not
affect in any way the length of the jumps, which is drawn independently beforehand. To estimate
the population of the target area, we use the gridded population of the world1. To test how this
angular preference impacts the results, we consider a variation of the models without it and com-
pare the results. The two variants are included in the lowest row of the table in Figures S9 and S10.
They show almost no difference in the error values for the Germany, although a systematic differ-
ence exists for the UK; the error of the variant with direction preference is consistently lower in the
case of that country. The presence of the sea around the UK introduces a distorting factor for the
TF model. Without the directional preference the agents freely spread over the sea independently
on the geographical shape of the country, leading to unrealistic results.

1The Gridded Population of the World and The Global Rural-Urban Mapping Projects, Socioeconomic Data and Appli-
cations Center of Columbia University, http://sedac.ciesin.columbia.edu/gpw.
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Agents’ traveling and link creation can be realized in the simulation in various update orders.
By default, at each time step, each agent first moves, next connects to other random agents, and
then connects locally; the following agent performs the same actions in the same order, etc. We
call this method sequential (“seq”). In an alternative update rule, which we call simultaneous
(“sim”), first all the agents move, then all of them create random connections, and finally all of
them create connections locally. The two update rules are included in the second row, counting
from the bottom, of the table in Figures S9 and S10. The update rules have little impact on the final
networks resulting from the simulation.

In the TF and L models, the agents create with probability pc random connections. These links
can be created in different ways; we consider three variants. First, each agent chooses another
agent uniformly at random, what constitutes the default mechanism (“rnd”). Second, each agent
randomly picks another node with probability proportional to the current degree of the node,
which corresponds to the preferential attachment mechanism (“pa”). Third, the agent draws
another node with probability decaying as a power-law of the distance between the two agents
(“dist”), with its exponent equal to 1.4 and the minimal distance of 0.1km. The type of random
connecting mechanism used is listed in the third row, counting from the bottom, of the table in
Figures S9 and S10. In some cases, e.g., for Germany, the distant-dependent probability of creating
a random link provides better results than the other variants.

We consider similar variants for the connections formed inside spatial boxes, which are created
with the probability p. The agents can connect uniformly at random (“rnd”), with a preference for
high-degree nodes (“pa”), or a preference toward the nodes with high intrinsic fitness (“fitn”).
The fitness of the nodes is drawn from a power-law distribution with an exponent of 1.5, which
roughly corresponds to the distribution of the growth rates reported in [2]. These variants are
implemented in the following way. First, we note that the number of connections created by the
agent is a result of a binomial process with probability p and the number of trials is equal to the
number of agents that currently stay in the given spatial box. The expected number of links created
in such binomial process is known, therefore, an equivalent number of connections can be created
with one of the two mentioned preferential processes. The type of connecting mechanism applied
in the spatial boxes is listed in the top row of the table in Figures S9 and S10. There is no consistent
difference in the error values between these variants. Thus, the connecting mechanism applied in
the spatial boxes has little impact on the results.

We conclude that the main components of the TF models are crucial to reproduce the structure
and geography of the social networks. These components include the mobility model, friend visits
and random connections. The power-law mobility model tends to produce the best results. The
angular preference of travels is important for countries whose geography is strongly restrained,
e.g., by sea. Other modifications to the model have low or no consistent impact on the results, with
the exception of the distance dependent random connections, which in certain cases consistently
influence the results.
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